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Deep Neural Networks Paccho’jgij

» Deep Neural Networks (DNNs) has been extensively developed and used
m LeNet

m AlexNet

m GoogleNet

m VGG

m ResNet

» They have becoming more powerful and can handle more complicated tasks

m Image classification
. e e
g A o

m Object detection
Glasses Drones

m Etc.




Growing number of parameters Pacific Norttest

» More powerful DNNs are made possible by

m More parameters
m More complicated structures

» As more advanced DNNs are developed > DNNs becomes deeper
m Lenet-5: 4 layers
m Alexnet: 7 layers

m VGG-16: 16 layers
m ResNet: 18 — 152 layers
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DNNs storage sizes are growing fast
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Challenges bring by larger DNNs

» Limited by the available RAM/storage space and network performance, it
can be hard to:

m Transferring DNNs between systems during training.
o E.qg., coarse tuning on one system and fine tuning on another system.
m Publishing pre-trained DNNs on webs.
o E.g., ILSVRC winners want to share their novel DNNSs.
m Deploying DNNs on systems for inference.
o E.qg., An application that uses pre-trained DNN needs an update from vender.
m Loading DNNs on GPUs with small memory
o E.g., Sometimes our training/testing platform can be very heterogeneous.
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What can users do with large models?

» Reduce batch size to make more space for the model. However, it may:
m Decrease training speed
m Impact accuracy
» Distribute on multiple GPUs or nodes
m More computing resource requirement
m Efficient design can be complicated

No perfect choice for users!



~

Pacific Northwest
NATIONAL LABORATORY

Model compression

DNNs are over-parameterized [Denil et al. NIPS'13]

Key Insight: Weights in DNN tend to be

structured and redundant. 2. A few parameters chosen at
random

3. Random set can be used to
predict the remaining parameters

CNN trained MLP trained CNN trained R-ICA trained on R-ICA trained on
on STL-10 on MNIST on CIFAR-10 Hyvarinen’s natural ~ STL-10 trained
7 image dataset
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Current approaches for compressing model

» Matrix decomposition:
m Denton et al. NIPS’14, Denil et al. NIPS’13

» Network pruning:
m Han et al. ICLR’18, Han et al. ICLR’17, Han et al. ICLR’15
» Weight quantization:

®m Yunchao et al. ICLR’15, Han et al. ICLR’16, Courbariaux et al. NIPS’15, Gupta et al.
ICML’15

» Efc.
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Network pruning [Han et al. ICLR15]
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1. Run normal network training
- Find out which connections are important St
_ _ ore sparse
2. Prune the small-weight connections weights in
- L1/L2 regularization CSR/CSC format
3. Retrain the network on remaining sparse connections
- Dropout to prevent overfitting




Weight Quantization - Weight Sharing [Han et al. ICLF

Using K-means
weights cluster index fine-tuned
(32 bit float) (2 bit uint) centroids centroids

n = num. of weights (16)
b = num. of bit for original data (32) »
K = num. of clusters (4)

10

Using centroids to
approx. weights
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Quantization: less bits per weight
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Compress rate = nlogs (k) T kb =3.2




Error-bounded Compression for DNN S No:?vi

» Error-bounded compression can be viewed as generalized approach
compared with pruning and quantization.

®m Pruning is a compression technique with error bound fixed at 100%.

® Quantization is a compression technique with limited but uncontrollable
error bound.

» SZ-2.0*: error-bound controlled lossy compressor
m Based on multi-dimensional fitting
m Error-bounded quantization techniques
m Linear regression

* SZ 2.0: https://github.com/disheng222/SZ - S,

11 —
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Error-bounded Compression for DNN Pacific North vest

» Error-bounded compression is adjustable and confrollable.
m Compression strength is adjustable through compression parameters.

m E.g.: Applying different compression configurations (~6500) on AlexNet (tested on ILSVRC12)

» Error-bounded compression shows promising performance.

m Better compression rate.
m Comparable accuracy loss.

Top 1 Error Rate
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Self-adaptive Compression for DNN bacific Nortrest

» As DNNs becoming deeper (e.g., ResNet-152) much more compression
configurations need to be searched to find the best one.

» Compression configurations can grow exponentially as DNN grow:
m Lenet-5 (~6.5K)
m Alexnet (~4.7M)
m VGG-16 (~1.8¥10™)
m ResNet-152 (~1.1*1074)
» Impractical to apply brute force search or search by hand.
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» We propose self-adaptive compression for DNN
m Compression parameters (R) : Hyper-parameter - Learnable parameter

m Learn compression parameters as if they are network parameters.

Froward propagation: 0 Pushes R - weaker compression

Evaluate accuracy loss and 9 Pushes R - stronger compression
size of network after

applying compression.

Customized SGD:

... =Fioss(W)+ a * compressed size (CS) For each layer:

Back propagation: Deriven based on Fuss

Adjust compression _
parameters based on De”"ea based on CS

accuracy loss and size of Update R=R—1r * (QJ,Q)

Add compression layer network
(cBmpress first, then decompress)
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» We propose self-adaptive compression for DNN
m Compression parameters (R) : Hyper-parameter - Learnable parameter

m Learn compression parameters as if they are network parameters.

Accuracy Loss
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Trade-off between accuracy loss and compression rate
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» Questions?
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